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Abstract— Software quality assurance is the most important activity during the development of software. Defective software modules 
may increase costs and decrease customer satisfaction. Hence, effective defect prediction models or techniques are very important in 
order to deliver efficient software. In this research we are using different machine learning algorithms to predict three main prediction 
performance measures i.e. precision, recall and f-measure. We are also calculating the accuracy of the software modules. Different 
classifiers are also used in order to predict the values of these measures by using important attributes only. The results obtained after 
applying both the techniques i.e. attribute selection and without attribute selection, on all the datasets, are the analysed and best pre-
dicted results are chosen in order to predict the correct values of prediction performance measures. The accuracy of some software 
modules can be improved to 91.16%, recall and precision to 1 after using attribute selection techniques in CM1 dataset. In PC1 dataset 
the accuracy has been improved to 93.778%.  

 

Index Terms— Defect Prediction Models, Precision, Recall, F-measure, Classifiers 
                                                                       ——————————      —————————— 

1 INTRODUCTION                                                                     
oftware Quality is the most important aspect during and 
after the software development. Any defective module in 
software may lead to increase in its cost and may cause 

failures and results in customer’s dissatisfaction. Delivering a 
robust, defect free and efficient software is very important; hence 
there is a huge need of efficient defect prediction models or tech-
niques. Software quality assurance requires both manual inspec-
tion and automatic formal methods. There are many modelling 
techniques that are used in software quality prediction, namely- 
Discriminant Analysis, Logistic Regression, ANN, Bayes Belief 
Network, Genetic Algorithms, Classification Trees etc. If a model 
gives both high defect detection rate and high overall accuracy 
then it is an efficient and effective defect prediction model. 
In this paper we are evaluating 4 NASA datasets [10] namely 
CM1, JM1, KC1 and PC1. We used many machine learning algo-
rithms available in WEKA, in order to predict modules’ preci-
sion, recall, f-measure and accuracy. According to Tim Menzies 
and his colleagues, who worked on JM1, there is a low probabil-
ity of detecting defective modules [1] 
Comparison of many machine learning algorithms on these da-
tasets, performed by Taghi Khoshftaar and Naeem Seliya also 
predicts low prediction performance [2]. Analysis done by Lan 
Guo and her colleagues also revealed similar results but they 
found that Random Forest technique produces better prediction 
results than other algorithms.[3] 
In this paper we introduce a software prediction methodology 
using different machine learning algorithms. Results obtained by 
considering all the attributes together are compared with the re-
sults obtained by considering attributes after they are ranked by a 
Ranker algorithm. Many machine learning techniques for attrib-
ute selection that have been used in this research are GainRati-
oAttributeEval, PrincipalComponents, FilteredAttributeEval and 
ReliefAttributeEval. Different classifiers such as NaiveBayes, 
BayesNet, SMO, SimpleCart, RandomTree etc. are used in order 

to predict values of precision, recall, f-measure and accuracy. 
 
1.1 Weka 

The Weka workbench is a collection of machine learning algo-
rithms and data preprocessing tools. Weka was developed at the 
University of Waikato in New Zealand, and the name stands for 
Waikato Environment for Knowledge Analysis. The system is 
written in Java and distributed under the terms of the GNU Gen-
eral Public License. It runs on almost any platform including 
Linux, Windows, and Macintosh operating systems. It includes 
methods for all the standard data mining problems: regression, 
classification, clustering, association rule mining, and attribute 
selection. All algorithms take their input in the form of a single 
relational table in the ARFF format, which can be read from a file 
or generated by a database query. [7] 

2 METHODOLOGY  
By using different classifiers and performing cross validation 
with 10 folds we calculated the commonly used prediction per-
formance measures- Precision, Recall and F-measure. The 10 
folds cross validation method partitions the dataset into 10 equal 
portions, this method uses each portion once as the test set to 
evaluate the model built using the remaining nine portions. Re-
sults obtained by considering all the attributes together are com-
pared with the results obtained by considering attributes after 
they are ranked by a Ranker algorithm. 
 
Precision: It is the ratio of number of modules correctly predict-
ed as defective to the total number of modules predicted as defec-
tive in the set tp+fp. 
 
Here, tp: number of true positives 
fp: number of false positives 
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fn: number of false negatives 
tn: number of true negatives 
 
Precision= tp/(tp + fp)                                               (1) 
 
Recall: It is the ratio of number of modules predicted correctly as 
defective to the total number of defective modules in the set 
tp+fn. 
Recall=tp/(tp + fn)                                                     (2) 
 
F-Measure: It considers precision and recall equally important 
by taking their harmonic mean. The higher value indicates better 
prediction performance. [4] 
F-measure = 2 * Recall * Precision / (Recall + Precision)                                                              
(3) 
 
 
 
            Fig1: Flowchart of the steps followed (without attribute selection) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig2: Flowchart of the steps followed (with attribute selection) 
 
 
 
 
 
 
 
 
 

 
3 DATASET 
In this research we analysed the CM1, JM1, KC1 and PC1 da-
tasets of Promise Repository [5], which belong to 4 software 
products developed by NASA. In each dataset we analysed the 
graphs of each attribute. There are 22 attributes, mentioned be-
low: 

v(G)-Cyclomatic Complexity, ev(G)- Essential Complexity 
iv(G)- Design Complexity, LOC- Lines of Code, N- Length V- 
Volume, L- Level, D- Difficulty, I- Intelligent Count, E- Effort, 
B- Effort Estimate, T- Programming Time, LOCode- Lines of 
Code, LOComment- Lines of Comment, LOBlank- Lines of 
Blank, LOCodeAndComment- Lines of Code and Comment, 
UniqOp- Unique Operators, UniqOpnd- Unique Operands, To-

talOp- Total Operators, TotalOpnd- Total Operands, Branch-
Count- Total Branch Count       
   
                            Table 1: Datasets Detail 

Project  No. of Mod-
ules 

Percentage 
with defects 

Language 

CM1 496 9.8% C 
JM1 10,885 19.3% C 
KC1 2,109 15.5% C++ 
PC1 1,109 6.9% C 

3.1 Classifiers Used 
1. Bayes Net: It represents the probabilistic dependencies of 

variables by graph structure. 
2. Naive Bayes: It is a simple probabilistic classifier based 

on applying Bayes Theorem with strong independence as-
sumptions. It assumes that the presence or absence of a 
particular feature is unrelated to the presence or absence 
of any other feature. 

3. SMO: SMO chooses to solve the smallest possible opti-
mization problem at every step. It gives highest precision 
and accuracy table for enemy dataset.[8] 

4. Logistic Regression: It is useful to predict a dependent 
variable on the basis of independent variables.[6] 

5. NBTree: Naive Bayes trees are simply decision trees with 
Naive bayes classifiers learned from the instances that 
reach the leaves. All attributes are used in each Naive 
Bayes model. 

6. Random Trees: In Random Trees classification works as 
follows: the random trees classifier takes the input feature 
vector, classifies it with every tree in the forest, and out-
puts the class label that received the majority of “votes”. 
In case of a regression, the classifier response is the aver-
age of the responses over all the trees in the forest. All the 
trees are trained with the same parameters but on different 
training sets. These sets are generated from the original 
training set using the bootstrap procedure: for each train-
ing set, you randomly select the same number of vectors 
as in the original set. The vectors are chosen with re-
placement. That is, some vectors will occur more than 
once and some will be absent. At each node of each 
trained tree, not all the variables are used to find the best 
split, but a random subset of them. With each node a new 
subset is generated. [11] 

7. Random forests: Random forests are learning methods 
for classification that operate by constructing a multitude 
of decision trees at training time. A random forest is a 
classifier consisting of a collection of tree-structured clas-
sifiers [9].  

 
 

 

Learning Models: 
NaiveBayes 
BayesNet 
SMO 
Logistic Regression 
NBTree 
RandomForest 
RandomTree 
SimpleCart 
 

Results:  
Precision 
Recall 
F-measure 
Accuracy 

   Test 
Set 

All Fea-
tures 

Feature 
Selection 
Tech-
niques 

Learning 
Models 
 

Result 

      Test Set 

Features 
(22)  
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4. RESULTS AND ANALYSIS 

           Table 2: Result analysis of CM1 dataset [3] 
Method Precision Recall F-

measure 
Accuracy 

BayesNet 0.643 0.947 0.766 64.65% 

Naive 
Bayes 

0.910 0.925 0.917 85.34% 

Logistic 
Regression 

0.964 0.909 0.936 88.15% 

NB Tree 0.979 0.899 0.938 88.35% 

Random 
Tree 

0.915 0.911 0.913 84.33% 

Random 
Forest 

0.971 0.902 0.935 87.95% 

The above table shows the results without any attribute selection. 
Different classifiers give different results, when attribute selec-
tion algorithms are applied to the data set, following results are 
obtained. 

 
                        Table 3: Best Results of CM1 
Performance 
Measure 

Method Values Selection 
Criteria 

Precision Simple Cart 1 With at-
tribute Se-
lection 

Recall SMO, Simple 
Cart 

1 With At-
tribute Se-
lection 

F-measure SMO, Simple 
Cart 

0.948 With At-
tribute Se-
lection 

Accuracy Logistic Re-
gression 

89.558% With At-
tribute Se-
lection 

 
 
                        Table 4: Result Analysis of JM1 [3] 

Method Precision Recall F-
Measure 

Accuracy 

BayesNet 1.422 0.876 0.780 68% 

Naive Bayes 0.948 0.832 0.886 80.5% 

Logistic 
Regression 

0.980 0.822 0.894 81.35% 

SMO 1 0.808 0.893 80.72% 

Simple Cart 0.977 0.821 0.893 81.11% 

NB Tree 0.978 0.822 0.893 81.27% 

Random 
Tree 

0.848 0.847 0.848 75.47% 

Random 
Forest 

0.948 0.838 0.889 81.05% 

 
The table above gives results without attribute selection. Results 
vary when some attribute selection techniques are applied. 
 
                                     Table 5: Best Results of JM1 

Performance 
Measure 

Method Values Selection 
Criteria 

Precision Bayes 
Net 

1.422 Without 
attribute 
Selection 

Recall SMO 1 With At-
tribute 
Selection 

F-measure Simple 
Cart 

0.895 With At-
tribute 
Selection 

Accuracy Simple 
Cart, 
SMO 

81.479% With At-
tribute 
Selection 

 
                                Table 6: Result Analysis of KC1 [3] 
Method Precision Recall F-Measure Accuracy 

BayesNet 0.694 0.931 0.796 69.89% 

Naive Bayes 0.905 0.888 0.896 82.361% 

SMO 0.996 0.849 0.843 84.779% 

Simple Cart 0.973 0.863 0.915 84.732% 

NB Tree 0.971 0.867 0.916 85.01% 

Random Tree 0.913 0.885 0.924 82.693% 

 
  The above table shows results without any attribute selection. 
The following table shows the best results obtained after applying 
both the method i.e. attribute selection and without attribute se-
lection. 
 
                                      Table 7: Best Results of KC1 

Performance 
Measure 

Method Values Selection Crite-
ria 

Precision SMO 0.996 Without attrib-
ute Selection 

Recall SMO 1 With Attribute 
Selection 

F-measure Random Tree 0.924 Without Attrib-
ute Selection 
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Accuracy Random Forest 85.917% With Attribute 
Selection 

 
 
                     Table 8: Result Analysis PC1 [3] 

Method Precision Recall F-Measure Accuracy 

BayesNet 0.759 0.956 0.949 74.391% 

Naive Bayes 0.934 0.947 0.940 89.179% 

Logistic 
Regression 

0.988 0.934 0.960 92.425% 

SMO 0.999 0.930 0.963 92.966% 

Simple Cart 0.996 0.935 0.964 93.237% 

NB Tree 0.984 0.947 0.965 93.507% 

Random 
Tree 

0.950 0.953 0.951 91.073% 

Random 
Forest 

0.985 0.946 0.965 93.507% 

 
The above table gives results of without applying any attribute 
selection algorithms. When attribute selection technique is ap-
plied the above results vary. The best results after applying both 
the techniques are shown below.  

 
                  Table 9: Best Results of PC1 

Performance 
Measure 

Method Values Selection Criteria 

Precision SMO 0.999 Without attribute 
Selection 

Recall SMO 1 With Attribute 
Selection 

F-measure Random 
Forest, 
NBTree 

0.967 With Attribute 
Selection 

Accuracy NBTree 93.778% With Attribute 
Selection 

 

5. Conclusion  
An important feature of this study is that it has compared re-
sults from different machine learning algorithms on several 
data sets. This paper contributes new results to the framework 
of software defect prediction. The software prediction per-
formance measures i.e. precision, recall, f-measure and accu-
racy are calculated on 4 different datasets. These measures 
have been calculated in two ways firstly by considering all the 
attributes of the dataset and secondly by attribute selection 
techniques. The results from these two techniques are com-
pared and the best results are taken into consideration for pre-

diction of faulty modules. The attribute selection techniques 
in some cases prove to be very efficient and hence improve 
the prediction performance measures.  
In datasets CM1 and KC1 all prediction performance 
measures values have improved after using attribute selection 
techniques. Similarly in dataset JM1 recall, f-measure and 
accuracy has improved when attribute selection is applied. In 
PC1 dataset the attribute selection techniques give improved 
values of recall, f-measure and accuracy. Hence, by using 
attribute selection techniques the accuracy of software mod-
ules can be improved to about 93.778%. In this research the 
attribute selection is done by ranking the attributes using ma-
chine learning methods. The higher ranked attributes are se-
lected for calculations. Hence, applying attribute selection 
techniques provided in Weka tool tends to improve the pre-
diction performance measures and help in effective defect 
prediction of software modules.  
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