
International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August-2013 406
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Fault Prediction in Software Modules using
Feature Selection and Machine Learning

Methods
Varneet Kaur*

Abstract— Software quality assurance is the most important activity during the development of software. Defective software modules
may increase costs and decrease customer satisfaction. Hence, effective defect prediction models or techniques are very important in
order to deliver efficient software. In this research we are using different machine learning algorithms to predict three main prediction
performance measures i.e. precision, recall and f-measure. We are also calculating the accuracy of the software modules. Different
classifiers are also used in order to predict the values of these measures by using important attributes only. The results obtained after
applying both the techniques i.e. attribute selection and without attribute selection, on all the datasets, are the analysed and best pre-
dicted results are chosen in order to predict the correct values of prediction performance measures. The accuracy of some software
modules can be improved to 91.16%, recall and precision to 1 after using attribute selection techniques in CM1 dataset. In PC1 dataset
the accuracy has been improved to 93.778%.

Index Terms— Defect Prediction Models, Precision, Recall, F-measure, Classifiers
 —————————— ——————————

1 INTRODUCTION
oftware Quality is the most important aspect during and
after the software development. Any defective module in
software may lead to increase in its cost and may cause

failures and results in customer’s dissatisfaction. Delivering a
robust, defect free and efficient software is very important; hence
there is a huge need of efficient defect prediction models or tech-
niques. Software quality assurance requires both manual inspec-
tion and automatic formal methods. There are many modelling
techniques that are used in software quality prediction, namely-
Discriminant Analysis, Logistic Regression, ANN, Bayes Belief
Network, Genetic Algorithms, Classification Trees etc. If a model
gives both high defect detection rate and high overall accuracy
then it is an efficient and effective defect prediction model.
In this paper we are evaluating 4 NASA datasets [10] namely
CM1, JM1, KC1 and PC1. We used many machine learning algo-
rithms available in WEKA, in order to predict modules’ preci-
sion, recall, f-measure and accuracy. According to Tim Menzies
and his colleagues, who worked on JM1, there is a low probabil-
ity of detecting defective modules [1]
Comparison of many machine learning algorithms on these da-
tasets, performed by Taghi Khoshftaar and Naeem Seliya also
predicts low prediction performance [2]. Analysis done by Lan
Guo and her colleagues also revealed similar results but they
found that Random Forest technique produces better prediction
results than other algorithms.[3]
In this paper we introduce a software prediction methodology
using different machine learning algorithms. Results obtained by
considering all the attributes together are compared with the re-
sults obtained by considering attributes after they are ranked by a
Ranker algorithm. Many machine learning techniques for attrib-
ute selection that have been used in this research are GainRati-
oAttributeEval, PrincipalComponents, FilteredAttributeEval and
ReliefAttributeEval. Different classifiers such as NaiveBayes,
BayesNet, SMO, SimpleCart, RandomTree etc. are used in order

to predict values of precision, recall, f-measure and accuracy.

1.1 Weka

The Weka workbench is a collection of machine learning algo-
rithms and data preprocessing tools. Weka was developed at the
University of Waikato in New Zealand, and the name stands for
Waikato Environment for Knowledge Analysis. The system is
written in Java and distributed under the terms of the GNU Gen-
eral Public License. It runs on almost any platform including
Linux, Windows, and Macintosh operating systems. It includes
methods for all the standard data mining problems: regression,
classification, clustering, association rule mining, and attribute
selection. All algorithms take their input in the form of a single
relational table in the ARFF format, which can be read from a file
or generated by a database query. [7]

2 METHODOLOGY
By using different classifiers and performing cross validation
with 10 folds we calculated the commonly used prediction per-
formance measures- Precision, Recall and F-measure. The 10
folds cross validation method partitions the dataset into 10 equal
portions, this method uses each portion once as the test set to
evaluate the model built using the remaining nine portions. Re-
sults obtained by considering all the attributes together are com-
pared with the results obtained by considering attributes after
they are ranked by a Ranker algorithm.

Precision: It is the ratio of number of modules correctly predict-
ed as defective to the total number of modules predicted as defec-
tive in the set tp+fp.

Here, tp: number of true positives
fp: number of false positives

S IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August-2013 407
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

fn: number of false negatives
tn: number of true negatives

Precision= tp/(tp + fp) (1)

Recall: It is the ratio of number of modules predicted correctly as
defective to the total number of defective modules in the set
tp+fn.
Recall=tp/(tp + fn) (2)

F-Measure: It considers precision and recall equally important
by taking their harmonic mean. The higher value indicates better
prediction performance. [4]
F-measure = 2 * Recall * Precision / (Recall + Precision)
(3)

 Fig1: Flowchart of the steps followed (without attribute selection)

Fig2: Flowchart of the steps followed (with attribute selection)

3 DATASET
In this research we analysed the CM1, JM1, KC1 and PC1 da-
tasets of Promise Repository [5], which belong to 4 software
products developed by NASA. In each dataset we analysed the
graphs of each attribute. There are 22 attributes, mentioned be-
low:

v(G)-Cyclomatic Complexity, ev(G)- Essential Complexity
iv(G)- Design Complexity, LOC- Lines of Code, N- Length V-
Volume, L- Level, D- Difficulty, I- Intelligent Count, E- Effort,
B- Effort Estimate, T- Programming Time, LOCode- Lines of
Code, LOComment- Lines of Comment, LOBlank- Lines of
Blank, LOCodeAndComment- Lines of Code and Comment,
UniqOp- Unique Operators, UniqOpnd- Unique Operands, To-

talOp- Total Operators, TotalOpnd- Total Operands, Branch-
Count- Total Branch Count

 Table 1: Datasets Detail

Project No. of Mod-
ules

Percentage
with defects

Language

CM1 496 9.8% C
JM1 10,885 19.3% C
KC1 2,109 15.5% C++
PC1 1,109 6.9% C

3.1 Classifiers Used
1. Bayes Net: It represents the probabilistic dependencies of

variables by graph structure.
2. Naive Bayes: It is a simple probabilistic classifier based

on applying Bayes Theorem with strong independence as-
sumptions. It assumes that the presence or absence of a
particular feature is unrelated to the presence or absence
of any other feature.

3. SMO: SMO chooses to solve the smallest possible opti-
mization problem at every step. It gives highest precision
and accuracy table for enemy dataset.[8]

4. Logistic Regression: It is useful to predict a dependent
variable on the basis of independent variables.[6]

5. NBTree: Naive Bayes trees are simply decision trees with
Naive bayes classifiers learned from the instances that
reach the leaves. All attributes are used in each Naive
Bayes model.

6. Random Trees: In Random Trees classification works as
follows: the random trees classifier takes the input feature
vector, classifies it with every tree in the forest, and out-
puts the class label that received the majority of “votes”.
In case of a regression, the classifier response is the aver-
age of the responses over all the trees in the forest. All the
trees are trained with the same parameters but on different
training sets. These sets are generated from the original
training set using the bootstrap procedure: for each train-
ing set, you randomly select the same number of vectors
as in the original set. The vectors are chosen with re-
placement. That is, some vectors will occur more than
once and some will be absent. At each node of each
trained tree, not all the variables are used to find the best
split, but a random subset of them. With each node a new
subset is generated. [11]

7. Random forests: Random forests are learning methods
for classification that operate by constructing a multitude
of decision trees at training time. A random forest is a
classifier consisting of a collection of tree-structured clas-
sifiers [9].

Learning Models:
NaiveBayes
BayesNet
SMO
Logistic Regression
NBTree
RandomForest
RandomTree
SimpleCart

Results:
Precision
Recall
F-measure
Accuracy

 Test
Set

All Fea-
tures

Feature
Selection
Tech-
niques

Learning
Models

Result

 Test Set

Features
(22)

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August-2013 408
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

4. RESULTS AND ANALYSIS

 Table 2: Result analysis of CM1 dataset [3]
Method Precision Recall F-

measure
Accuracy

BayesNet 0.643 0.947 0.766 64.65%

Naive
Bayes

0.910 0.925 0.917 85.34%

Logistic
Regression

0.964 0.909 0.936 88.15%

NB Tree 0.979 0.899 0.938 88.35%

Random
Tree

0.915 0.911 0.913 84.33%

Random
Forest

0.971 0.902 0.935 87.95%

The above table shows the results without any attribute selection.
Different classifiers give different results, when attribute selec-
tion algorithms are applied to the data set, following results are
obtained.

 Table 3: Best Results of CM1
Performance
Measure

Method Values Selection
Criteria

Precision Simple Cart 1 With at-
tribute Se-
lection

Recall SMO, Simple
Cart

1 With At-
tribute Se-
lection

F-measure SMO, Simple
Cart

0.948 With At-
tribute Se-
lection

Accuracy Logistic Re-
gression

89.558% With At-
tribute Se-
lection

 Table 4: Result Analysis of JM1 [3]

Method Precision Recall F-
Measure

Accuracy

BayesNet 1.422 0.876 0.780 68%

Naive Bayes 0.948 0.832 0.886 80.5%

Logistic
Regression

0.980 0.822 0.894 81.35%

SMO 1 0.808 0.893 80.72%

Simple Cart 0.977 0.821 0.893 81.11%

NB Tree 0.978 0.822 0.893 81.27%

Random
Tree

0.848 0.847 0.848 75.47%

Random
Forest

0.948 0.838 0.889 81.05%

The table above gives results without attribute selection. Results
vary when some attribute selection techniques are applied.

 Table 5: Best Results of JM1

Performance
Measure

Method Values Selection
Criteria

Precision Bayes
Net

1.422 Without
attribute
Selection

Recall SMO 1 With At-
tribute
Selection

F-measure Simple
Cart

0.895 With At-
tribute
Selection

Accuracy Simple
Cart,
SMO

81.479% With At-
tribute
Selection

 Table 6: Result Analysis of KC1 [3]
Method Precision Recall F-Measure Accuracy

BayesNet 0.694 0.931 0.796 69.89%

Naive Bayes 0.905 0.888 0.896 82.361%

SMO 0.996 0.849 0.843 84.779%

Simple Cart 0.973 0.863 0.915 84.732%

NB Tree 0.971 0.867 0.916 85.01%

Random Tree 0.913 0.885 0.924 82.693%

 The above table shows results without any attribute selection.
The following table shows the best results obtained after applying
both the method i.e. attribute selection and without attribute se-
lection.

 Table 7: Best Results of KC1

Performance
Measure

Method Values Selection Crite-
ria

Precision SMO 0.996 Without attrib-
ute Selection

Recall SMO 1 With Attribute
Selection

F-measure Random Tree 0.924 Without Attrib-
ute Selection

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August-2013 409
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Accuracy Random Forest 85.917% With Attribute
Selection

 Table 8: Result Analysis PC1 [3]

Method Precision Recall F-Measure Accuracy

BayesNet 0.759 0.956 0.949 74.391%

Naive Bayes 0.934 0.947 0.940 89.179%

Logistic
Regression

0.988 0.934 0.960 92.425%

SMO 0.999 0.930 0.963 92.966%

Simple Cart 0.996 0.935 0.964 93.237%

NB Tree 0.984 0.947 0.965 93.507%

Random
Tree

0.950 0.953 0.951 91.073%

Random
Forest

0.985 0.946 0.965 93.507%

The above table gives results of without applying any attribute
selection algorithms. When attribute selection technique is ap-
plied the above results vary. The best results after applying both
the techniques are shown below.

 Table 9: Best Results of PC1

Performance
Measure

Method Values Selection Criteria

Precision SMO 0.999 Without attribute
Selection

Recall SMO 1 With Attribute
Selection

F-measure Random
Forest,
NBTree

0.967 With Attribute
Selection

Accuracy NBTree 93.778% With Attribute
Selection

5. Conclusion
An important feature of this study is that it has compared re-
sults from different machine learning algorithms on several
data sets. This paper contributes new results to the framework
of software defect prediction. The software prediction per-
formance measures i.e. precision, recall, f-measure and accu-
racy are calculated on 4 different datasets. These measures
have been calculated in two ways firstly by considering all the
attributes of the dataset and secondly by attribute selection
techniques. The results from these two techniques are com-
pared and the best results are taken into consideration for pre-

diction of faulty modules. The attribute selection techniques
in some cases prove to be very efficient and hence improve
the prediction performance measures.
In datasets CM1 and KC1 all prediction performance
measures values have improved after using attribute selection
techniques. Similarly in dataset JM1 recall, f-measure and
accuracy has improved when attribute selection is applied. In
PC1 dataset the attribute selection techniques give improved
values of recall, f-measure and accuracy. Hence, by using
attribute selection techniques the accuracy of software mod-
ules can be improved to about 93.778%. In this research the
attribute selection is done by ranking the attributes using ma-
chine learning methods. The higher ranked attributes are se-
lected for calculations. Hence, applying attribute selection
techniques provided in Weka tool tends to improve the pre-
diction performance measures and help in effective defect
prediction of software modules.

6. References

1. T. Menzies et al., “Mining Repositories to Assist in Project
Planning and Resource Allocation,” Proc. 1st Workshop on
Mining Software Repositories (MSR 04), 2004,
http://msr.uwaterloo.ca/papers/Menzies.pdf.

2. T.M. Khoshgoftaar and N. Seliya, “The Necessity ofAssuring
Quality in Software Measurement Data,” Proc. 10th Int’l
Symp. Software Metrics (METRICS 04),IEEE CS Press, 2004,
pp. 119–130.

3. L. Guo et al., “Robust Prediction of Fault Proneness by Ran-
dom Forests,” Proc. 15th Int’l Symp. Software Reliability Eng.
(ISSRE 04), IEEE CS Press, 2004, pp. 417–428.

4. A.G. Koru and J. Tian, “An Empirical Comparison and Char-
acterization of High Defect and High Complexity Modules,” J.
Systems and Software, vol.67, no. 3, 2003, pp. 153–163.

5. J.S. Shirabad and T.J. Menzies, “The PROMISE Repository of
Software Engineering Databases,” School of Information
Technology and Engineering, University of Ottawa, Canada,
2005.

6. Lan Guo, Yan Ma, Bojan Cukic, Harshinder Singh, “ Robust
Prediction of Fault-pronness of Random Forests”.

7. Ian H. Witten and Eibe Frank, “Data Mining- Practical Ma-
chine learning Tools and Techniques”, Second Edition, ©
2005 by Elsevier Inc.

8. Sequential Minimal Optimization: A Fast Algorithm for Train-
ing Support Vector Machines, John C. Platt, Microsoft Re-
search jplatt@microsoft.com Technical Report MSR-TR-98-
14 April 21, 1998.

9. http://www.stat.berkeley.edu/users/breiman/RandomForests
10. http://promise.site.uottawa.ca/SERepository/datsaets-

page.html
11. http://www.stat.berkeley.edu/users/breiman/RandomForests/,ht

tp://docs.opencv.org/modules/ml/doc/random_trees.html

*Varneet Kaur, is a Student, currently pursuing M.E. from
the Computer Science Department, Chitkara University,
Distt. Solan, Himachal Pradesh, under the guidance of Mr.
Amit Arora as guide for the M.E. Thesis.
Email ID: symphony2215@gmail.com

IJSER

http://www.ijser.org/

	1 INTRODUCTION

